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An Integrated Constitutive Theory for the Mechanical Behaviour
of Sea Ice: Micromechanical Interpretation
S.S. Sunder

Massachusetts Institute of Technology

INTRODUCTION

Ice in gereral, and columnar sea ice in particular, is a very
complex material which exhibits a wide range of behaviors of-
ten at the same time. As a consequence of its occurrence at
high homologous temperatures, the mechanical behavior of ice
is strongly influenced by temperature and rate of loading. 1In
most applications ice behaves as a material undergoing both
continuum deformation and cracking activity. Microcracking
activity can be effectively idealized as continuum behavior
and represented by models describing multiaxial flow with
appropriate modifications to account for the damage due to
nicro-cracking. This type of damage manifests itself as
strain-softening observed during constant strainrate tests in
compression and as tertiary Creep in compressive creep tests.
Cn the other hand, macrocracking activity implies "failure" of
the material at macroscale and is a separate behavicral mecha-
nism. A constitutive model that captures both the mechanisms
of multiaxial flow as a continuum angd ultimate failure by
macrocracking in addition to the rate and temperature depen-
dence is necessary to investigate the mechanics of deformation
and progressive failure in ice.

Previous modeling work directly relevant to the development of
such a constitutive theory is limited since nost investigators
have treated ice as either an elastic-plastic or a viscoelas-
tic material under multiaxial states of stress. They include
the works of Glen (1955), Palmer {1967), Shapiro (1978), Sinha
(1978, 1979, 1983b), Michel (1981), wWang (1982), Morland and
Spring (1981, 1982, 1983), and Ashby and Duval (1985). Stu-
dies on the damage behavior of ice have been relatively few
in comparison. Sinha (1982) and Sanderson and Child (1984)
have studied the occurrence of first cracks in ice under
compressive creep conditions, while Schulson (1978, 1984a,b)
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and Currier and Schulson (1982) have studied the brittle to
ductile transition in polycrystalline ice. The use of damage
mechanics theory for modeling ice is being explored by Karr
(1984, 1985a,b). More recently, Szyszkowski and Glockner
(1985) have proposed a relativeiy comprehensive model that
describes the continuum behavior of pure ice accounting for
damage due to microcracking. The models cited here are highly
variable in the degree to which they are related to the
micromechanics of ice behavior, i.e,, the physical mechanisms
governing ice behavior at ricroscale.

This paper presents 4 new rate-sensitive constitutive theory
for describing the mechanical behavior of ice developed at
MIT. The theory integrates (i) a potential function descrip-

generalization of the Maxwell differential model and the
associated flow rule with (11) a rate-sensitive Drucker-Prager
surface to describe ultimate failure by macrocracking repre-
senting either vielding of the material or fracture depending

on the stress state, The constitutive model is characterized
by its ability to:

(a) Decompose the various recoverable (instantaneous and
delayed elastic or "primary creep") and
irrecoverable (secondary creep and strain-softening
or tertiary creep) components of strain,

(b} Represent continuously damaging or strain—softening
material behavior during ductile-to-brittle
transition in compression with a linear incremental
damage accumulation model,

(c) Describe materially anisotropic mechanical behavior
with a pressure-insensitive but rate-dependent
potential function.

(d) pPredict first crack occurrence or nucleation with a
rate-dependent limiting tensile strain criterion.

(e) Distinguish the mechanisms of miltiaxial flow as a
continuum and ultirate failure by macrocracking
leading to vielding of the material or fracture,

Further, the model shows Strong dependency of the continuum
behavier under creep and constant Strainrate conditions. The
model predictions compare very well with several independent
sets of experimental data, particularly those for first-year
sea ice. Data for the uniexial "strength" of sea ice has been
augmented with the extensive experimental data base available
for pure crystalline ice througn a normalization Proposed by
Weeks and Assur (1967) based on the work of Frankenstein and
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Garner (1967) to account for the presence of brine. The
effect of temperature on the continuam behavior of ice is
modelled in terms of an Arrhenius activation energy law that
is considered by Mellor (1983) to be walid for temperatures
below -10°C, The model is described in two papers by Ting and
Shyam Sunder (1986a,b); the first focuses on the continuum
benavior of sea ice while the second focuses on its yielding
and fracture behavior. This paper presents the model in inte-
grated form emphasizing its micromechanical interpretation.

CONTINUUM THEORY

Uniaxial model formulatiaon

The nonlinear generalization of the two element Maxwell fluid
model consists of an elastic spring in series with a viscous
dashpot. The characterization of the two elements is
discussed in what follows.

Rate-sensitive elastic spring As a consequence of its appli-

cation at high homologous temperatures, the elastic modulus of
ice is sensitive to even "slight" variations in rate of
loading (Mellor, 1983) and cannot be taken as a constant. If
the Young's modulus for ice, E, is defined to be the modulus
value at very high rates of loading, then the variation of
effective or apparent elastic modulus, Ecfge, with rate may be

expressed as:
Eegr = E (1 - r exp(-a/E ¢1/N)) (1)

where é is the strainrate, r and A are constants, and N is the
power law index for ice. Eguation (!) shows that the effec-
tive modulus tends to the Young's modulus as the strain-rate
approaches infinity. When the strainrate tends to zero, the
effective modulus tends to (1-r)E, and for r equal to one, the
effective modulus tends to zero. If r is zero, the effective
modulus is rate-insensitive and egual to the Young's modulus.
A value of r less than one is necessary to model stress relax-
ation.

Tne rate-sensitive elastic spring recresents recoverable
strains contributed both by instantaneous elasticity and by
delayed elasticity. By defining the total elastic strain to
be the sum of the strains due to these components it is
possible to model the rate-sensitive spring as the series
combination of two springs, one with medulus equal to E, i.e.,
the Young's modulus, and the other wizh a modulus equal to Eg«
the modulus of delayed elasticity. It then follows that:

1/Eegf = V/E + 1/EQ (2)




with
Eq = E [1/r exp(A/E ¢/N) - 1] (3)

Equation (3) shows that the modulus of delayed elasticity
tends to infinity at infinite strainrate and to [{1-r)/rlE at
zero strainrate. In the latter case, the modulus tends to
zero if r is one and to infinity if r is zero. Use of Eg. (2)
shows that when the modulus of delayed elasticity is infinity,
the effective modulus egquals the Young's modulus. When the
modulus of elasticity is very small with respect to the
Young's modulus, the effective modulus equals the modulus of
delayed elasticity. This occurs at low strainrates as r tends
to one.

Nonlinear viscous dashpot The secondary creep strainrate,

€gcs in ice is modelled in terms of the well-known Glen's
power law (Glen, 1955):

o = (A/M) g4 /N (4)

where A and N are the constants in Bg. (1), and M is a third
constant. (A/M) is often taken to be a single constant.
However, since A is used to describe delayed elasticity or
primary creep resistance, an additional degree of freedom in
the form of the constant M is used to model the secondary
creep resistance. The nonlinearity is associated with the
dashpot constant o/éSc which is a function of the secondary
creep strainrate.

The description of deformations due to delayed elasticity and
secondary creep proposed here can be interpreted in terms of
slip within and between ice grains aiong the lines suggested
by previous investigators. The practical value of such an in-
terpretation is not always clear, For example, the models of
Sinha (1979, 1982) and Michel (1981) consider grain boundary
sliding and basal slip in the hexagonal ice crystals as fac-
tors governing the two deformations, while the model of Duval
and Ashby (1985) considers slip on the basal plane plus one
other nonbasal system as being responsible for the deforma-
tions. However, in all three cases the resulting "physical"
model itself is a spring-dashpot idealization of the postu-
lated slip mechanisms.,

Continuous damage model In the transition from pure ductile

to pure brittle behavior under compressive loading ice behaves
essentially as a continuunm undergoing damage. Under tensile

loading the transition region is much smaller and a continuum
description of damage is of limited value. Damage or micro-
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cracking activity in ice leads to tertiary creep under con-—
stant stress loading and to strain-softening under constant
strainrate loading. Damage is almost nonexistant at very
small strain and strain-rate but increases as both strain and
strainrate increase. Further, unloading a damaged material
generally exhibits a reduction in the effective modulus of
elasticity. Thus the phenomenon affects both the rate-
sensitive spring and the non-linear viscous dashpot. The
development here is based on the hypothesis that damage influ-
ences the constant A describing the creep resistance of ice,
which appears in both the elements of the generalized Maxwell
model. The effect of damage on the Young's modulus is neglec-
ted. Defining D as a one-dimensional damage parameter and Ap
as the damaged value of the constant A, it is possible to
state that:

Ap = (1-D)a , (5)

where D=0 in the case of no damage, and the A's in Egs. (1),
(3) and (4) are replaced with Ap. In general, D varies be-
tween zero and one. For the case of total damage, i.e., D=1,
the material looses all its ability to sustain stresses. The
following mathematical form describes the dependence of D on
strain and strainrate, and satisfies the physical constraints
identified above.

D =1 - [exp(-cqee) + exp(-cye) {1-exp(—c1£é)}] (6)

where c; and €2 are constants. This equation shows that as’
strainrate approaches infinity D tends to one, i.e., the
material is completely damaged, Further, as strain approaches
infinity D tends to [1—exp(—c2é)], i.e., there is a limiting
value of damage at any given strainrate.

The formulation of the damage parameter in Eg. {(6) is appro-
priate for monotonic loading conditions., For a variable
loading history the evolution of the damage parameter is
assumed to follow the well-known Miner's linear damage accumu-
lation rule, According to this rule, the incremental damage
accumulation depends only on the current state of damage.
Thus if the rate of loading (or strainrate) changes at some
instant, Eg. {6) applies at the new rate with the level of
danage previously accumulated, This requires the definition
of an "eguivalent" initial strain corresponding to the new
strainrate,

Tenperature effects At rates of loading where no material

damage is present, the effect of temperature on the s<ress
versus secondary creep strainrate relationship is characteriz-
ed by an Arrhenius activation energy law. Mellor (1983)




states that for temperatures greater than -10°C the law is not
valid and that the complete empirical relation derived from
experiments should be used to model the temperature dependence
in such cases. Sinha (1978) has concluded that the variation
of the delayed elastic or pPrimary creep strain with tempera-
ture also follows an Arrhenius ‘law. He found the activation
energy for both the secondary creep flow and the delayed elas-
tic deformation to be equal. The parameter A, which appears
in Egs. (1), (3) and (4), describes the creep resistance: of
ice and is taken to follow the Arrhenius activity energy law
to model temperature effects below -10°C, i.e.,

A = A, exp(Q/NRT) (7)

where T is the temperature in degrees Kelvin, A, is a tempera-
ture independent constant, Q is the activation enerqgy, and R
is the universal gas constant., BAs the temperature reduces,
the parameter A increases in value., 1In consequence, the ef-
fective elastic modulus tends to the Young's modulus and the
nonlinear dashpot becomes highly viscous. Then ice displays a
purely linear elastic bzhavior with little rate or temperature
sensitivity. This model takes into account the relative tem-
perature insensitivity of the Young's modulus of ice and of
the microcracking activity in ice,

Uniaxial model parameters The uniaxial model has been
successfully verified against several independent sets of
experimental data for both pure and sea ice as described in
Ting and Shyam Sunder {(1985b, 1986a), The verification is
based on the following values of the eight model parameters:

= 9,5 GPa
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= 0.00652 Mpa s1/N
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The universal gas constant, R=8.314 J mol~! x~'. The value of
r is subject to some uncertainty since experimental data is
inadequate to quantify it. Additional data may indicate that
a lower value is pore appropriate. All other parameters can
be derived from conventional tests conducted on ice,

The models of Sinha (1978), Michel (1981), puval and Ashby
(1985), and Szyszkowski and Glockner (1985) use 7, 9, 11, and
9 parameters respectively if prediction of temperature depen-
dence with a single paraceter, for example Q, is considered,
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It must be recognized that (i) the models of Sinha, and Duval
and Ashby do not capture material damage, (ii) verification of
Michel's model with experimental data appears to be limited,
and (iii) the ability of the models. to describe stress
relaxation has not been investigated adequately. Furthermore,
the models have not been verified against sea ice data.

Multiaxial model formulation

Field observations have shown that sea ice, which is
predominantly columnar, has two sources of anisotropy: (a)
the c-axis is oriented perpendicular to the axis of crystal
growth, and (b) the c-axes of different crystals or grains may
show preferred azimuthal orientation in the plane on which
they lie. This anisotropy strongly influences the mechanical
behavior of first year sheet ice, while its influence on the
behavior of multi-year floes, though less well studied, may be
less. The development presented here is based on an
orthotropic generalization of the uniaxial, rate-sensitive
damage model for the continuum (flow) behavior of ice.

The strainrate vector due to the three components of creep is
related to the stress vector through an effective stress
measure for orthotropic materials with identical behavior in
compression and tension, i.e.,

a a a
2 1 2 2 2 3 2
Ue = 3/8 1 3 (cxx_cyy) + —3'(ny _ozz) + 3 (ozz—oxx)
2 2 2
+ 2a4 ny + 2a5 oyz + 2a6 sz ] (8)

with B=a;+a;. This may be expressed in compact form using
matrix notation as:

0e2 = 3/8 oTeo : (9)

where G is a matrix containing the a;'s and defined in Ting
and Shyam Sunder (1985),.

The creep strainrate vector can be related to the stress
vector with the help of a scalar potential function obeying
the associated flow rule. The desired relationship can be
written as: )

Eor = A §f | (10)
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where

o}
1 e N N .
A = 3/B E;—{Eg'+ (M/AD) Ue ] (11)

and

s* = (12)

|2

Note that S* may be thought of as a pseudo deviatoric stress
vector for an anisotropic material. The evaluation of Ap and
Eg requires knowledge of the effective creep strainrate
vector which can be expressed in a manner similar to Eq. (9)
as shown in Ting and Shyam Sunder (1985).

Given the stress vector, the pseudo deviatoric stresses may be
obtained from Eq. (12). Then, applying Eqs. (9), (11) and
(10} in succession leads to the creep strainrate vector.

Multiaxial model parameters Five uniaxial (compression) tests
at constant strainrate may be used to derive the five ortho-
tropic model parameters: a4y to ag. Note that (i) aq can be
set equal to one without loss of generality, and (ii) there is
~experimental evidence which shows that the power-law exponent
N can be considered independent of the direction of loading,
The six tests (including one used to obtain the reference uni-
axial parameters) can be conducted in the three directions de-
fining the axes of orthotropy and along the 45° axes on the
three orthogonal planes contained by the axes. Ting and Shyam

Sunder (1985, 1986a) provide equations to evaluate the model
parameters from the experimentally obtained ratios of stress
in a given direction to that in the reference direction. In
first year sheet ice, the ratio of vertical stress to horizon-
tal stress in the direction of the c-axes at constant straine-
rate varies from 2 to 5 (Butkovich, 1959, Peyton, 1966,
Vaudrey, 1977, Sinha, 1983a, and Frederking, 1983), while the
stress ratio may vary in the range 0.25-0.60 at a 45° azimu-
thal angle to the c-axes when they are aligned on the horizon-
tal plane and 0.50-0,95 at a 90° angle (Wang, 1979,
Vittoratos, 1979, Richter-Menge, et al., 1985, Peyton, 1968).

This pressure insensitive material model for the continuum
(flow) behavior of ice follows very well the experimental data
of Frederking (1977) on the plane strain compressive strength
of columnar grained and granular-snow ice. Verification of
the model against data on sea ice, which is significantly less
pressure sensitive than pure ice (see Richter-Menge, et al,,
1985, for cdata on anisotropic first year sea ice), suggests
that a pressure sensitive model may be adeguate in nany
engineering applications.
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YIELDING AND FRACTURE THEORY

Uniaxial model formulation

The behavior of ice in uniaxial tension and compression at
constant strainrates is identical up to a transition strain-
rate, € y. Above this strainrate, ice fractures in tension
although it continues to flow in compression. For the range
of grain sizes typically encountered in sea ice, Schulson
(1979, 1984a,b) and Currier and Schulson (1982) find that the
tensile strength of ice is governed by the stress to nucleate
cracks (not the stress to propagate cracks) and that the
tensile strength actually does represent fracture, i.e.,
sudden failure. The ductile to brittle transition in tension
tends to occur over a negligible range of strainrates unlike
that in compression where strain-softening is an important
behavioral phenomenon.,

In compression, the strength is governed by brittle fracture
only when the strainrate exceeds a limiting value,étc, which
typically is greater than étt by several (5 to 6) orders of
magnitude. However, microcracks can nucleate at lower
strainrates as a result of material damage. The stress at
which the first "important" microcrack, i.e., one that is
visible to the naked eye in pristine ice, nucleates is termed
the "yield" stress in compression. This yield stress is
always less than (or equal to) the maximum attainable
compressive stress or "strength",

A consistent model for predicting the uniaxial fracture
strength in tension and yield stress in compression are
developed below.

Tensile fracture strength The stress-strain-strainrate
behavior in uniaxial tension prior to fracture is considered
to be identical tc that under uniaxial compression., Hawkes
and Mellor (1972) justify this assumption from creep tests on
ice. The tensile fracture strength versus strainrate rela-
tionship can be modeled as:

—_ s e (13)

where O¢n is the maximum and constant value of tensile
strength at high strainrates and the second term models the
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increase in tensile strength as the strainrate increases from

the transiti value. The value of B is chosen so that at ¢
Eq. F1%? preggcts a value og stress, Oy, equal to that glveﬁt

by the continuum theory.

The data of Ashby and Cooksley-Hallam for pure ice contained
in Palmer et al. (1982) suggests that €,.=5x10"8 s-1 and

Ott=0.48 MPa. From this the material constants for the model
are estimated to be:

176 Mpa s!/N
2.0 Mpa

B
Otm

Model parameters for sea ice are estimated from the above by
correcting for the presence of brine.

Compressive yield strength Prediction of the first
"important” crack to nucleate under uniaxial compressive load-
ing is based on the hypothesis that this occurs due to the la-
teral tensile strain and strainrate resulting from the Poisson
effect of elasticity and the incompressibility condition of
creep deformation. The first crack is postulated to occur
when the lateral tensile strain equals the strain for fracture
under uniaxial tensile loading at the instantaneous strain-
rate. The strain for tensile fracture at a given strainrate
can be obtained from the tensile stress-strain-strainrate-
strength model. This results in a rate-dependent limiting
tensile strain criterion for first crack occurrence or nuclea-
tion. The adequacy of this criterion has been established
(Ting and Shyam Sunder, 1985b, 1986b) with the help of Gold's
(1972) experimental data on the time to first crack occurrence
in pure polycrystalline ice during compressive creep tests.

The compressive stress at which the first crack nucleates is
the desired yield stress, Ocns Once this stress is reached,
the material continues to sustain compressive load but loses
its ability to carry tensile loads in the transverse direction
if applied. This is a realistic modeling assumption that is
often used to describe the behavior of concrete (ASCE, 1982).
Application of the cracking criterion to constant strainrate
tests in uniaxial compression results in the following mathe-
matical model for the yield stress:

1 1 1
—_— = + (14)
s 2 o m2 Cam) £17Y,2

where C., is the maximum or constant value of yield stress in
compression as the strainrate approaches infinity but it also
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represents the fracture stress for strainrates greater than
étf. At these strainrates both the yield and fracture
stresses are almost equal and an elastic-brittle fracture
model for ice is adequate., The second term models the
increase in yield stress as the strainrate increases from
twice the transition value in tension. The factor of two is
applied since incompressibility requires the lateral tensile
strainrate to be half the compressive strainrate. Below this
transition strainrate the material flows in compression
without nucleating cracks to cause "yielding".

Experimental data for both pure and sea ice suggests that
Etc=10'2 s~ ana Ocm=5 MPa. This stress value should be
corrected for the presence of brine when applied to sea ice.

Multiaxial model formulation

A rate-sensitive and isotropic Drucker-Prager "failure"
surface is used to describe the yield/fracture behavior of
ice. The failure surface may be expressed as:

£(0) =p I + /3y - k (15)

where p and k are constants, and I and J, are the first
invariant of stress and the second invariant of deviatoric
stress respectively. Thus, the model developed here considers
the failure surface to be pressure sensitive although the flow
behavior is considered to be pressure insensitive. The
constants p and k may be derived from two uniaxial tests at
constant strainrate, one in tension and the other in
compression., The resulting equations are:

(Ocn/otf) + 1

1
P = e (16)
3 (ccn/otf?,_ !
and
kK =0gq (p = 1/73) or  Ogs (p + 1/V3) (17)

Both p and k are functions of the effective strainrate. For
strainrates less than the transition strainrate in tension, p
equals zero and k is proportional to the effective stress for
the continuum flow. Experimental data to develop an aniso-
tropic model for the failure surface is not available at the
present time,

For eéffective strainrates below the transition strainrate in
uniaxial tension, ice flows as a continuum but does not
"fail". The maximum stress state attainable at any given
strainrate is given by Eq. (8) and termed the limiting flow
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surface. When the effective strainrate exceeds the transition
value in uniaxial compréssion, it is assumed that no flow can
occur. Instantansous elastic deformation is followed by
fracture on the Drucker-Prager surface., At intermediate
values of effective strainrate the limiting flow surface and
the failure surface intersect. Whenever one of the principal
stresses is tensile, the failure surface defines the maximum
attainable stress state prior to fracture. The direction of
cracking is assumed to be perpendicular to the largest
principal tensile stress, When the state of stress is purely
compressive, the limiting flow surface is attainable.
However, if the loading path crosses the "failure" surface, a
crack is assumed to nucleate in the direction of the smallest
compressive stress and no tensile stress can be sustained by
the material in that direction if applied at a later time.

Haynes (1973) has compared several classical failure theories

for brittle materials against his experimental data on the

tensile strength of bubbly polycrystalline ice under triaxial
stresses. None of the theories was able to adequately predict
the data. However at approximately the same strainrate used
by hinm, i.e., 10-5 s‘1, the model developed here indicates a
ratio of g, to 0+ equal to about 1.7. This appears to
provide the best prediction of the measured data. These
results are consistent with Schulson's (1984a, personal
communication) work on the ductile to brittle transition in
ice under compression if it is recognized that crack
nucleation (not crack propagation) governs both the tensile
fracture strength and the compressive yield stress.

CONCLUSIONS

This paper has presented a new and integrated constitutive
theory for the con<inuum and yielding/fracture behavior of sea
ice emphasizing its micromechanical interpretation. The model
has been extensively verified against experimental data. A
numerical solution algorithm has been developed to simulate
arbitrary loading histories using the model. This has been
implemented in a computer program based on the finite element
method of analysis. Several boundary value problems involving
ice~structure interaction have been solved using the computer
code and assuming continuum behavior of ice as described in a
companion paper at this conference (Shyam Sunder, 1986).

Current research at MIT is concerned with the incorporation of
vielding/fracture in the numerical simulation of ice-structure
interaction processes. An objective fracture energy release
rate criterion is being developed to modify the "strength”
based fracture criterion presented in this paper.
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Further research, both experimental and theoretical, is neces-
sary to investigate the influence of (i) unloading/reloading
and cyclic loading, and (ii) brine volume, or more generally
porosity, on the multiaxial behavior of ice. The results of
such research can be used to improve the model proposed here.
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